D=-A034% 482

UNCLASSIFIED
]
o]

Al )
AD34482

)

WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER

F/e 1272 -
THE HOPF=RINOW THEOREM IN INFINITE DIMENSION. (U)
OCT 76 1 EKELAND DAAG29-75~C=0024
MRC-TSR-1692 NL

<EBEHEEE0N

END

DATE
FILMED

Sm=]7




MRC Technical Summary Report #1692

THE HOPF-RINOW THEOREM IN INFINITE
DIMENSION

ADA034482

Ivar Ekeland

Mathematics Research Center ,
University of Wisconsin—Madison } ;/

610 Walnut Street
Madison, Wisconsin 53706 [

October 1976 ’ | :,' \1.\ D D C

i { \ 1
(Received August 30, 1976) ‘ {; I i \ JAN 18 . :
Palc R [ Gsiygist!)
";‘ \ l\‘ ( \ / A J
i / \ \?
'. / Approved for public release i
S— 'p i Distribution unlimited '

Sponsored by

U.S. Army Research Office
P,O. Box 12211

Research Triangle Park
North Carolina 27709

P& DI NGO 15N 1 W0 T TRV R oM SISm0 R 200 : S
e DEMRRD O RGES RV SRIETITN = SNSRI BT = R0 R DGR,




r

—

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

T

THE HOPF-RINOW THEOREM IN INFINITE DIMENSION
Ivar Ekeland

Technical Summary Report #1692
October 1976

\
\

\ ABSTRACT

2\1 ,s.;;ﬂ"‘/

* In this paper, {—proche following theorem! Let ‘
M be a complete, possibly infinite -dimensional,
Riemannian manifold. Take any point g in M. Then
r\;L nole w

the set of points pre; M which can be joined to g by
a unique minimal geodesic contains a countable inter-
section of open dense subse‘cs.N
AMS(MOS) Subject Classification - 58B20, 49A25, 53C20
Key Words - Hopf-Rinow theorem, infinite-dimensional

Riemannian manifolds, minimal geodesics,

cut locus

Work Unit Number 1 - Applied Analysis

o 1
AGCESSION for ; E

aris Wit G / ;

— L — 1] patt Secion® }
A PRAXKODNCED 3 [

JUSTIFICATION ...corcerecmrrrr e ?

e S e 3

DISTRIBUTION /AVARABILITY COOES
Wi} AVAIL ud, st SPERIAL

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




I. Statement of results

We begin by reviewing some essential features. By a Riemannian
manifold M we understand a connected Cw-manifold modelled on some
Hilbert space H, such that the tangent space TMp ~ H carries a
scalar product (- ,- )p which is Coo in pe M and defines on TMp
a norm " Ilp equivalent to the original norm of H .

If p and g are two points in M, a path from p to q is a

continuous map c: [0,1] - M such that c(0) = p and c(l) =q. The
q

p
If ce cg is such a path, its length Lg(c) is the real number defined

set of all piecewise C°° paths from p to g will be denoted by ¢

by:
Yey= [ bewl
1.1 Li(c)i= c(t dt
(1.1) p()fol()c(t)
The geodesic distance d on M is defined by:
(1. 2) ¥p,d e M, d(p,a) = inf{L(c)|c e g b

It is compatible with the manifold topology of M. Any path ce cg
such that d(p, q) = Lg(c) and the speed “c"c is constant will be

00
called a minimal geodesic; it must be C , and satisfy the equation

(where V denotes the Levi-Civita connection);

(1. 3) E(t) =0

vé:(t)
which means that ¢(t) is obtained from &(0) e TMp by parallel trans-

lation along ¢ . Conversely, any solution ¢ of (l. 3) is called a

Sponsored by the United States Army under Contract No. DAAG29-75-C-
0024.
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geodesic. The manifold M will often be assumed to be complete for
the metric d; this will imply that solutions of (1. 3) are defined for all
te R, i.e. that geodesics can be indefinitely extended.

Throughout this paper, for & >0 and pe M, we shall use the

following notations;

(1.4) Bf)= e [lel ) <o), sg= getm|lel - 5)

(1. 5) /32: {me M|d(p, m) < 5}, sz= {me Mld(p,m) = &} .

Whenever the solution of (1. 3) with the initial condition ¢(0) = £e TMp
exists upto t=1, we set expp ¢ = c(l), and call expp the exponential
map. If the Riemannian manifold M is complete, exppg is defined for
all £ e TMp . Even if it is not, by the usual theorems on differential
equations (e.q. [5], Th. IV.1), there is a neighbourhood % of (0, p)
in TM such that the map (§, m) —» expmg is well-defined and Coo on
% . Now consider the map (&, m) - (expmg, m) from % to M XM. Its
tangent map at (0, p) is easily seen to be an isomorphism, so that we
can apply the implicit function theorem. It follows that we can find

6, > 0 with the property that, for all 6¢ ]0, & there exists an

1

n > 0 such that, whenever m e /9:, we have the inclusion an ) /32 ,

il

) )
and the map expm: Bm - @m is an isomorphism.
Note in particular that any two points in ’32 can be joined by a
unique minimal geodesic, depending smoothly on the endpoints; i.e.,
whenever g and m belong to '@2’ there is a single ¢ e TMq such

that m = equg, and the map (m,q) = ¢ is CC‘o i

a2 -
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We define A(p) as the supremum of all n > 0 with the property
that any two points in /32 can be joined by a unique minimal geodesic,
depending smoothly on the end points. We have just shown that A(p) > 0.
It follows from the definition that, for all 6 ¢ ]0, A(p)[, the exponential

map is a i diffeomorphism of Bg onto Bg, and of Sg onto 86:
(1. 6) d(p,m) < A(p)= E¢: m = exp £ and Hgllp: d(p, m) .

The Hopf-Rinow theorem ([7 ]) states that any two points on a com-
plete finite-dimensional Riemannian manifold can be joined by a minimal
geodesic. This is no longer true in the infinite-dimensional case as ob-
served by Grossman ([4]) and Mac Alpin ([6]), who construct in Hilbert
space an infinite-dimensional ellipsoid, the great axis points of which
cannot be joined by a minimal geodesic. Recently, Atkin ([1]) has
modified the Grossman counterexample to construct a complete infinite-
dimensional Riemannian manifold M, and give two points on M which
cannot be joined by any geodesic at all. In other words, the exponential
map need not be surjective in the infinite-dimensional case.

In a preceding paper ([2]), I proved that any two points can be

joined by a path which is almost a minimal geodesic.

Theorem A. Let M be a complete (infinite-dimensional) Riemannian

manifold, and take two points p,q on M. Forevery ¢ >0, there

exist a Cw path ¢ from p to g and a vector £ e 'I'Mp such that;

1
(1.7) fo lewll,  dt < e+ dip,

-
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1
2
(1.8 lewy - &t dt <
) fo e - el dt< e
where £(t) € TMc(t) is obtained from ¢ by parallel translation along c. f

In this paper, I shall prove that almost all points can be joined

to a prescribed endpoint by a unique minimal geodesic. Recall that a

G{5 subset is a countable intersection of open subsets.

Theorem B. Let M be a complete Riemannian manifold, and take a point

q on M. The set T of points pe M such that there exists a unique

minimal geodesic from p to q contains a dense G6 .

Since M is a complete metric space, the Baire category theorem
holds on M, so that a dense G{5 subset of M is very large indeed;
for instance, a countable intersection of dense G6 subsets is still a
dense G6 subset, and hence non-empty.

Note that the "uniqueness" part is of interest even when M is
finite dimensional. In this case, M\T is the set of points pe M
such that there exist at least two minimizing geodesics from p to q,
and is known as the cut locus of g . Theorem B thus implies that the
cut locus of any point in a complete finite-dimensional Riemannian
manifold is included in a countable union of closed subsets with empty
interior. This is a known fact, although the usual proof is different,
relying on transversality arguments applied to the exponential map from
q . In the infinite-dimensional case, however, even the "existence"

part of Theorem B is new, settling a question raised in [1] and [2].

-l -
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The proofs of Theorem A and B rely on special versions of Theorem
1.1 of [2], which I rephrase here for the reader's convenience (taking

A =n¢ in the original statement):

Theorem 1. 1. Let V be a complete metric space, and F: V— R a

lower semi-continuous function such that inf F # +» . For every ¢ >0,

there exists some point u e V such that:

(1. 9) Fuy< g +inf F
(1. 10) yve V, F(v)>F(u) - gd(u, V)

The proof of Theorem A relied on a "smooth, Riemannian" version

of Theorem 1.1, which was ([2]):

Theorem A'. Let M be a complete Riemannian manifold, and f: M - R

a non-negative C1 function. For every g >0, there exists some point

pe M where:
(1. 11) f(p) < e+ inf £

(1. 12) llgrad f(p)llp <e

Similarly, the proof of Theorem B will rely on a "local, Riemannian"
version of Theorem 1.1. In [3], such a result was proved in the frame-
work of Banach spaces with differentiable norms, and it is of course no
trouble at all to restate it in the framework of Riemannian manifolds. We

begin by a definition:

-
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Definition 1.2. Let M be a Riemannian manifold and f a real-valued

function on M . We shall say that f is locally g-supported at pe M

o0
iff there exist an open neighbourhood % of p and a C function

g: %4 > R such that g(p) = 0 and:

(1.13) yme %, f(m) - f(p) > g(m) - ¢d(m, p) .

Taking the local chart defined by the exponential map, we get the

following characterization;

Proposition 1. 3. If f is locally e-supported at pe M, for every

g' > ¢ thereexist n' >0 and (' TMp such that:

n' : s, . el
(1.14) VEe BY, flexp ) - f(p) - (§,L0) > sllgllp.

Conversely, if formula (1.14) holds with ¢' = ¢, then f is locally

e-supported at p .

Proof. Let us first assume formula (l.14) holds with ¢' = ¢, for some

n'=n>0 and some {' =€ TMp . We can always assume that n < A(p) ,

so that exp;)1 is a well-defined Cao map from Bg onto BB, and

formula (1. 6) holds. Writing all this into (1.14), we get:
-1
(1.15) Vym e Bg, f(m) - f(p) - (expp m, g)p > -ed(p, m)
which coincides with formula (l.14) if we define gq: 3; - R by:
-1
1. 16 m) = (exp m .
( ) g(m) = ( Pp ’ f:)p

There remains to prove the first part of Proposition 1. 3. Assume
condition (1.13) is satisfied, and let ¢' > ¢ be given. Choose

-6~
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ne ]0, A(pf so small that /33 C Yy . Taking formula (l. 6) into account,

we rewrite (1.13) as:
(1.17) VE € Bg, flexp  €) - £(p) > g(exp £) - & ll«gllp .

But the function g - expp: Bg - R is differentiable at zero, so

that there exist n'e ]0,n[ and {'e TMp with (recall that g(p) = 0):

(1.18) el <= latexp g) - (¢, SMEAC, -s)”éllp -

Formulae (1.17) and (1. 18) together yield (1. 14). .

It is clear from the definition that if f is Frechet-differentiable
at p, then both f and -f are locally g-supported at p for every
e >0 . The converse is proved in [3]. So Definition 1.2 can be looked
upon as a very weak differentiability property. Its main interest is that

it holds for all points of a dense (not G(,) subset of M :

Theorem B'. Let M be a Riemannian manifold, and f a lower semi-

continuous function on M . For every & >0, the set of all points

pe M at which f is locally g-supported is dense in M.

Proof. Let there be given a point g e M and a neighbourhood % of

qd . We have to find some point pe % where f is locally e-supported.
)
Choose 6 ¢ ]0, A(q)[ so small that Bq C% and f is bounded

from below on /32 (because of the lower semi-continuity):

(1. 19) inf{f(m)|m ¢ @2} & o
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By Lemma l. 4 below, we can assume that the closure ) 8 is
complete in the induced d-metric.

Define a function s 52 - R by:

b(m) = [62 - "exp_lmIIZ]'1 % i B
(1. 20) s a

. )
U(m) = +00 if me sq

-8 &
Clearly, { is lower semi-continuous on f3 a and smooth on 23 .
We now set ¢ = 4 +f. This is a lower semi-continuous function, bounded
from below, on the complete metric space Ez . By Theorem l.1, there

is some point p e Eg such that:
: -8
(1. 21) p(p) <inf{pm)me B} + &
&
(1. 22) ¥me B0, o(m) > o(p) - ed(m, p)
By formula (l.21), ¢(p) is finite, so pe BZ C % . Writing
¢ = U +f into formula (l.22), we get:
&
(1.23) Ym e /3q, f(m) - f(p) > ¥(p) - Y(m) - gd(m, p)
But this is exactly Definition 1. 3, with g(m) = ¢(p) - b(m), so
f is locally g-supported at p, and the proof is complete. =

Note that we did not assume the Riemannian manifold M to be

complete. This is because of

Lemma 1.4. Let M be a Riemannian manifold. Then every point pe M

has a neighbourhood which is complete in the induced d-metric.

8-




Proof. Choose 6 ¢ ]0, A(p)[ so small that all the maps Tq exp;)1

are norm-bounded in ,s:(TMq, TMp) by some uniform constant k when
6 = e

qe @p . Take ye ]0, 6(l+k) l[ . Iclaim that /9: is complete.

Let us first note that, for any two points m and g in EY, we

have, travelling along the minimal geodesics from m to p and from

p to g:
(1. 24) d(m,q) <d(m, p) + d(p,q) <2y .

6
Let us now take a path c e c?n which is not contained in tsp :
Denoting by ¢ and T the first and last moments in ]0,1[ when

d(p, c(t)) > 6, we have the inequality:

o 1
q ~) > - b
(1. 25) Lo(c) 2 fo eyl at +fTHc(t) eyl - :

-1
Setting £(t) = expp c(t) € BZ for 0<t<og and T<t<Ll, we

get:
o TR
(1. 26) fo &t IIC(t) dr > k fo &t ||pdr
|
>k el - Ilg(0>llp)
-l
>k (6-Y)
and similarly:
: =i
(1. 27) fT &ty llc(t) dt >k (6-y)

Writing formulae (1. 26) and (1. 27) into (1. 25) yields L;(c) _>_2k'1(6-y).

Taking into account the assumption & > (1+k)y we finally get:

e




g
>2
L (c) > 2y
It follows that, whenever m and q belong to E;, any path

)
c?n with length < 2y must be contained in Bp . Hence:

(1. 29) d(m, q) = inf{L(c)]| c e c‘:n, clt) e @Z yte [0,1]}

Setting £(t) = exp;)1 c(t) e BZ, we get:

1
(1. 30) L(c) > k'lf Il at
O p

>k Heq) - col -

Writing this into formula (1.29) yields:

‘ot d sl By
(1. 31) vm,ge B Y, dmq) >k llexp ' m-exp ql_ .
p p p D

It follows from this estimation that if q, ne IN, is a Cauchy

o =l i
sequence in GY, then expp a, will be a Cauchy sequence in BZ) 5
and hence will converge to some £ e Eg , so that q, will converge

to exppg € 5; o 130 E: is complete, and so is the proof.




II. Proof of Theorem B.

From now on, we are given a complete Riemannian manifold M,
and some point ge M . We shall denote by dq the function m - d(g, m)
en M .

For any p# q, we set D(p) = inf{A(p), d(g,p)} >0 . For any

5 € ]0, D(p)[ and any path c e cg , we denote by TZ(C) the set of all

moments when C cCrosses 82 .
o)
(2.1) To(c) = {te [0,1]] d(c(t), p) = 8} .

With any o« > 0, we associate the non-empty closed subset Cg(a)

of SZ defined by:
6 q q 6
(2.2) C j(e) = {ct)] ce ¢ L@ <d(pa)+a, te T ()} .

Recall that the diameter of CZ(a), denoted by diam Cg(a), is the
supremum of the distance between two points in Cg(a) -

The proof of Theorem B goes through five lemmas.

Lemma 2.1. Assume dq is locally e-supported at pe M\{q} for some

e >0. Then, for any 6 > NI

(2. 3) ane]0, D) ¥v6€]0, n[, da>0: diam Cg(a) < 06

Proof. Take ¢g'>¢ and B >0 so small that:

3
(2.4) 8 >4(e'+p/2)%

By Proposition 1. 3 there exist ne ]0, D(p)[ and ¢ e TMp such

that; “He




(2. 5) I gllpgn » d(q, exp £) >d(q, p) +(§,8) - e'llng :

A first consequence of this is as follows. Applying the triangle

inequality:

(2.6) d(aq, exppg) <d(q, p) + d(p, exppﬁ) )

and taking formula (1. 6) into account, we get:
2T <n= (1+¢g
(2.7) e < n= o e)llgllp 20,

which means that:

(2. 8) Ilz..llpgue-

We now take 6 ¢]0, n], any path ce cg with L(c) < d(q, p) +B5 ,

and any s e 'I‘Z(c) . It follows from the definitions that:

S
(2.9) d(g,c(s) <L) - [ llewll
0

< d(q, p) + & - d(p, c(s))

oyt

Writing this inequality into formula (2. 5), and setting §(s) =

exp;lc(s) € Sz, we get:
(2.10) il e')llg(S)Ilp +B8 > (£(s), L) -
Dividing by & throughout, this becomes:

(2. 11) (L,é(S)/fi)p < -l+e' +p .

Taking formula (2. 8) into account, we get:

«12-
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(2.12) -t /el 69)/8y) > - e -p + e
As both -t/[lt]l and g(s)/6 are unit vectors, this implies that;
(2.13) lle(s)/s + r,/llgllpllf) <2(2¢ +p)L+ et
If ' e rgz is any other path with L(c') <d(p,q) + 6, and if
s' e Tg(c'), we also will have, setting £'(s') = exp;)1 c'(s') :
(2. 14) lers/s + /Il 12 < 22er+pa+ ey
Comparing formulae (2.13) and (2.14), we get:

-1
2

e, 1
(2.15) lets) - sl < Wz 2t + )7 (14077 6

Taking inequality (2.4) into account, this becomes:
(2.16) sy - &'(s')llpf_es
which is the desired result, since. £(s) and §¢'(s') are arbitrary points
in cé(p ) .

g T
We now introduce the subset Re of M defined by:
6

(2.17) Ry = {p# ql 26 €]0, D(p)[, Fa > 0: diam Cyle) < 05} .

Lemma 2.1 implies that if dq is g-supported at p #+ q, then p

belongs to R 0 for all 8 >4Ne . More precisely:

Lemma 2.2 . Assume dq is locally g-supported at p e M\{q} for some

e >0. Then p belongs to the interior of Ra for all 6 > 4\/_5-:

2 -1
Proof. Choose ke ]Jl,2[ and ©' > 4 ¢ such that k“(2-k) 6'=6 .

«]13-




Now take any 61 € ]0, D(p)[ . It follows from the definition of I)(p)
5
that the map ¢ = exp'1 o exp is well-defined from B : into TM_,
5. M m p p m
for all m e Bpl . Note that <pm(§) is C°° in (m,§) and that e is
)
the identity on Bp1 . It follows that 62 e ]o, 61[ can be found so that;

-1
(2.18) ||g||p5_62 and d(m, p)_<_62= k= "Tg‘pm" <k.

6
Set 63 = 62 /3. Forany me 6p3 and any two points ¢ and &'
)
in Bp3, the inverse image by 2 of the line segment between ¢m(g)

. 36
and <pm(§‘) lies entirely within Bp 3, so that estimation (2.18) holds

all along. It follows easily that whenever .m, exppg and exppg' be -
)
3
long to
g @p

, we have the inequality:

-1
(2.19) k™ lle-grll, < Hop®) - o el <klle-ell .

By Lemma 2.1, we can choose § ¢ ]0, 63[ and a > 0 such that:

/4

(2.20) diam c:’f (@) < 380'/4
Set n = inf {56/4, a/3, 35(1-k'1)/4}. I claim that @gc B

386/4 6 56/4 5 /4
b CBmCBp whenever m e Bp

by the triangle inequality. Since 5§/4 < 61 < D(p), any two points in

First of all, we notice that &

B; can be joined by a minimal geodesic depending smoothly on the

8/4
P

Take any me /3;, any path ce c?n such that L?n(c) <d(m,q) +a/3,

end points, so n <D(m) forall me

& -1 6
and any time s e ’I’m(c) . Set gm = exp_ c(s) e sm . We define a new

- q
path c ¢ cm by:

-14 -
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c(t) = c(2t(l-s) + 2s-1) for 1/2 <t<1

(2.21) c(t) = exp_2tg(s) for 0<t< 3 .

Clearly, C is obtained from c by cutting short between m and
c(s), so that L;(E) £ L:](c) . We now go one step further to build a

~ -1
path ce cg ; g8t = expp m, and define:

c(t) = c(2t-1) for 1/2 <t<1
(2. 22) ‘
c(t) = expp 2tp for 0 <t <1

Clearly:

a,a q -
(2.23) Lp(C) =L (c) +d(m,p)

<d(m,q) + «/3 +d(m, p) .
Using the triangle inequality:

(2. 24) L @ <d(p,a) +d(m,p) + /3 +d(m, p)
< d(p,q) +ta

36/4 A . -1 36/4 S
Take ¢ € Tp (c), and set gp = expp c(o) € Sp R | e G- B

is another path such that L21(c') <d(m,q) + a/3, we define g;n € Srén ;

3
c' e cfn, e C(:)’ f..'p € Sp6/4 in the same way, and we still have

Lg(e') <d(p,q) + a . It follows from formula (2.20) that:

PR -t < 360'/4

(2.25) e, - eoll < 360/
Using estimation (2.18), this implies that:

(2. 26) oty - opitll < 36k 0°/4

«]l5a
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The same estimation applied to "t"p"p = 356/4 vyields
(2.27) lo_(¢ ) - exp o)l > 36k /a
m °p m m=
and since "exp;nl(p) "m = d(m, p), this yields

-1
(2.28) o)l > 382k - 1)/

and likewise:

: =
(2.29) ||<pm(t_,p) I >382k™ -1/a.

It follows from the construction that:

(2. 30) tm =8/ e €Il

(2.31) g =80 )/l @l

and hence:

@.32) e -l <sllo @) -o @l /intle @), ot}

Using inequalities (2.26) and (2. 28), this yields:

(2. 33) e -e Il <sk’2-k) o

which is the desired result, since gm and g]'m are two arbitrary points

5 (a).
in Cm

Take p#q and &€ ]J0, D(p)[. We shall say that a path ce cg

is geodesic inside Bf) if there exists £ e 'I‘Mp such that c(t) = expptg

for 0 <t< 6/|Ig ||p . We denote by N the set of points pe M\ {q}

such that there exists an increasing sequence g D(p) with the following

w3

oy —
at PR 5 3
o 8 L
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property: for any sequence cn € cq

P
is geodesic inside apn, the sequence én(o)/"én(o)“p converges
1
in S 5 We first connect this up by proving that R,= M R
0>0

q
such that Lp(cn) (p,q) and cn

0

Lemma 2.3. Assume p belongs to R9 for every 6 >0 . Then p be-

longs to R’00 c

Proof. By the assumption on p, there exists a sequence 6n in ]Jo,

D(p)[ and a decreasing sequence a > 0 converging to zero such that:

)
n -1
(2. 34) diam Cp (an) <n 6n

Let pn be an increasing sequence such that: 6n < pn < D(p) and
Pt D(p) . Now let cn be any sequence in cg such that L;(cn) -d(p, q)
and cn is geodesic inside @';n . By readjusting the time parameter if
necessary, we may assume that there exists gn € S; with cn(t) = exppt gn
for 0<t< Py SO that gn * én(O)/"éI;(O)"p . Ncgte that whenever k >n,
we have 6n_<_pn§pk, so that ck intersects spn at expp 6ngk

For any prescribed n, there is an N >n such that Lg(ck) <
d(p, q) + a, for all k >N . Taking any £ >k >N, we find by the
preceding remark that both 6n F,I and 6n gk belong to czn(an) . By

formula (2. 34), this boils down to:
-1
(2. 35) ¥n, aN: ¥2 >k >N, Ilgk-glllpgn

so that the sequence gn is Cauchy, and hence converges in SL : @
Take pe M\{a} and & e ]0, D(p)[ . Recall that the distance

from g to 86 is defined as:
P -7
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(2. 36) d(a, 8 ) = inf {d(a,m)Ime 87} .

It follows easily from the definitions that:

(2. 37) d(a, 8) = d(a,p) - 5 .

A nearest point to q in 82 is a point m e sg such that d(q, m)
d(q, 82) . Such points do not always exist in the infinite-dimensional
case, and even in the finite-dimensional case they need not be unique.
So one of the main interests of R00 lies in the following:

1
p

such that for all & ¢ ]0, D(p)[, expp épp is a nearest point to q in

Lemma 2.4. Assume p belongs to Roo . Then there exists p_e€ S

82 . This point pp is the common limit of all sequences <':n(0)/||6:n(0)||p
p
geodesic inside S pn and Lg(cn) = (P, Y

Proof. Take a sequence cn in cg such that Cn is geodesic inside

p
n q s .
Bp and Lp(cn) - d(q, p) . We know that cn(O)/”cn(O) ”p converges

to some E in S; . Now this limit E cannot depend on the particular
sequence chosen. For if c;l were another, with c;l(O)/"'c;](O) ||p con-
verging to 'g", we could define a third sequence C'r'x with the same
properties by setting alternatively c; = cn if n is odd and c;'] = c;_l if
n is even, and é;_'l(O)/”c':;(O)”p would still have to converge since

pe Roo . So E: E', and we denote by pp this common value.

Let cn be any sequence in cg such that L;(cn) - d(p,q) . Take

p

n
S_€ Tp (cn), and set cn(sn) = exp

1
b g gn, with gn € Sp . We replace

P
3 by the shortcut En constructed as follows:

-18-
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c = b 1
cn(t) = cn(Zt(l-sn) + an 1) for 3 <t <1

(2. 38)

= <t < 4
Cn(t) exp, thn gn for 0<t<s

We have Lz(cn) sz(En) >d(p,q), SO L?)(En) must converge to

p

d(p,q) . Moreover, En obviously is geodesic inside @pn . It follows

1

that the sequence gn =cC n(0)/||E:n(0)“ converges to pp in Sp :

Now take any 6 ¢ ]0, D(p)[ . There is an N so large that p > &

whenever n > N; then En intersects gg at expp 6§n, which con-

verges to expp 6p~p . We have;
q —_
(2. 39) d(qa, expp 5gn) < Lp(cn) -6

Letting n go to infinity yields:

(2.40) d(a, exppéup) <d(p,q) -

By formula (2. 37), this means precisely that expp épp is a nearest

point to g in 32

Another useful property of Roo is the following:

Lemma 2.5 . Assume p belongsto R . Then so does XB. 6pp v

whenever & ¢ 10, D(p)[ -

Proof. Set m = expp 6pp, with 0 < & < D(p); we have to prove that

m e Rgo . Note first that D(m) > D(p) - &; indeed, whenever n< D(p) - 5y

there is some &' < D(p) with B:n G ag , So any two points in /32

-19-
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and hence in B?n - can be joined by a unique minimal geodesic, de-

pending smoothly on the endpoints. Let P 0< P < D(p), g D(p) ,
be the increasing sequence characteristic of pe Rw . By the preceding
remark, it is possible to choose an increasing sequence L 0< g % D(m) ,

A = D(m), such that:

. > -
(2. 41) ¥ne IN, s M &

: q q Za
Let cn be a se:uence in cm such that Lm(cn) d(m, q) and cn
is geodesic inside an . We can write, by readjusting the time parameter

= e = .

if necessary, cn(t) expmt gn for 0<t <o with “gn"m 1 Now
set m = expp D(p)|.tp e M. Iclaim that the sequence cn(prl -8)e M
converges to m . From inequality (2.41) it will follow that the sequence
t,n converges in S:n’ and Lemma 2. 5 will be proved.

Since P D(p), we can choose N, so large that Pe > & when-

1

ever n >N so that the sequence cn(pn - 8) is well-defined, starting

l’

at Nl'

Let ¢ >0 be given. We have seen in Lemma 2.4 that m is a

nearest point to g in 32 . It follows from this and formula (2. 37) that:

q
(2.42) La(c )+ 6~d(p,a) .

i exp-l c (s ). Define a new
p n'n

[o]
n -
Take . Tp (cn), and set gn P

- q
path cne cp by:

c(t) = " - fdete]
cn(t) cn(Zt(l sn) +an 1) for g<t<

(2.43) — z. <t<
cn(t) = expp 2t pngn for 0<t<

-

w20
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Let us do some elementary computations:

1
q -— .
(2. 44) Lo(,) < d(p,m) +dm,c (s)) + fs ||cn(t)||cn(t) dt
n

| A

S
n 1
s+f Mol at+f Nl . dt
0 n s n

n

5 q
=6 +Lm(cn) .

It follows from this and formula (2.43) that chl(gn) - d(p, q) .

p

Moreover, En is clearly geodesic inside A& B Using Lemma 2.4,

we conclude that the sequence gn converges to pp in SL . Recalling

- Sy = o
that 0% D(p), we see that cn( 5) expp pngn converges to m in M.

Since cn(l/Z) = cn(sn), we get:
(2.45) d(m, c (s )) ~ 0
We know that:
(2.46) d(m, Cn(Sn))Z d(p, Cn(Sn)) A AL

Hence = T 6 < sn Let us do some elementary computations

again:
p_=-6
n
(2.47) de(s), e o -ons< [ Mgl dt
Sn
" Py 1
=10 {e ) _j;) ||cn(t) "c(t)dt -fs "Cn(t)"C(t)dt 3

n

o
Using inequality (2.4) and the fact cn is geodesic inside Gmn %

this becomes:

a2le

e ——————csd




s et

q
(2.48) d(cn(sn), cn(pn-é)) _<_Lm(cn) - (pn-é) - d(qg, cn(sn)) ;
p
n :
But cn(sn) € gp ; using formula (2. 37) yields:
n
(2.49) dig,c (s )} >2d(g, 8 ) = A%, P) - P

Writing this into formula (2.48), we get:

(2. 50) d(c (s ), ¢ (p_-8) <L (c )+ - d(a, p)

Letting n go to infinity, we have by formula (2. 42):

(2.51) d(cn(sn), cn(pn-é)) -0

Adding (2.45) and (2. 51) yields the desired result. [

The hard part of the proof is over now, and the remainder is soft
analysis. For all ne IN, define Qn as the interior of Rl/n . By
construction, Qn is an open subset of M. By Lemma 2.2, for any
e e |0, 1/16n2[, it contains the set Te of all points p # g at which
dq is g-supported. By Theorem B', the set Te is dense in M. So
Qn’ ne IN, is a sequence of open dense subsets of M. Since M is
a complete metric space, the Baire category theorem holds, and the
intersection R =) Q. is a dense G6 subset of M . Note that RGC Re' :
whenever 0 < 0 <n9‘, so that RC M Re . It follows by Lemma 2. 3 that
RC R00 . I claim that from every p? Ro0 there is a single minimal geodesic
to g .

The proof now mimics the classical argument for Hopf-Rinow in the

finite-dimensional case (see [7] for instance). Take any pe R00 and

22«
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)
set p=d(p,q). Take &¢ ]0, D(p)[ . By Lemma 2.4, there is in gp

o0
a nearest point expp&pp to q. Definea C path ¢ by c(t) =

exp, tpp.p . Iclaim that, for all te [0,1[ :
(2.52) c(t) e R and d(q,c(t)) = p(l-t)

Letting t — 1, since dq is continuous, this yields d(g,c(l)) = 0,
so c(l) =g and c is actually a geodesic from p to q . By construction,
its length is p= d(p,q), so c is minimal. If c'e cc; is another minimal
geodesic, then the constant sequence in cg defined by cn =igl for all
n satisfies Lg(cn) - d(p,q) and certainly is geodesic inside @p; . By
Lemma 2.4, ¢&'(0)/6 has to be by SO c' coincides with c .

So we are left with proving formula (2. 52) for all t in [0,1[ . By
Lemmas 2.4 and 2.5, used in conjunction with formula (2. 37), it is true
for all t in [0, D(p)[ . Let us denote by t the supremum of all s e]o,]
such that formula (2. 59) holds on [0, s[, and assume that et

We will derive a contradiction. Indeed, set p= c(:c-), and take any

6 ¢ 10, D(p)[ . We already know that t >D(p) >0 . Since c is smooth,

there exists a time s e ]0, ?[ such that d(;, c(8)) < 6/4. Set c(s)=m.

Now, since & < D(S), any two points in /3; can be joined by a
unique minimal geodesic, depending smoothly on the endpoints. By the
triangle inequality, Bfn/z = B% , so that 6/2 < D(m) . By assumption,
formula (2. 52) is satisfied on [0,t [ . It follows that d(q,m) = p(l-s) ,

and m e R30 . By Lemma 2.4, expm 6 pm/Z is a nearest point to g in

a2 3u

o
i



a2 86'/2 , and we have, by formula (2. 37):
m

2. 5 g == l- -
(2.53) d(a, exp_ o /2) = p(l-s) 6/2
‘ By the triangle inequality:
(2. 54) d(p, exp_ 6p_/2) >d(p,q) - d(q, exP bp/2)
\ =ps +6/2

’ Set ps(ps + 6/2)-1 = a . We define a path ¢' from p to

exp 6pm/2 by:

crt) = expp[t pspp/a] for 0<t<a

| (2.55)
‘ &'ty = expm[(t-a)épm/Z(l-a)] for @ <t<1

The length of c' is precisely ps+ 6/2, and ||c':'||c is constant.

It follows by inequality (2. 54) that c' is a minimizing geodesic from p

e D

to exp 6pm/2 . Since c'(t) = c(ts/a) for 0<t<a, and c alsoisa

geodesic, we get:
(2.55) c'(t) = c(ts/a) for 0<t<1

It follows that:

(2. 56) oty = expm[-;—é%f% §pm] for s<t<s/a

By Lemmas 2.4 and 2.5, always taking equality (2. 37) into account,
formula (2. 52) holds for s <t < s /a . But s/a=s + 6§/2p . Since . -
d(c(t_), c(s)) < /4, and the speed along ¢ has constant magnitude p ,

we have T -8<6/4p. SoT-s<6/4p. So t <s/a, the desired contradiction.
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